
JOURNAL OF COMPUTATIONAL PHYSICS 12, 150-152 (1973) 

Note 

A FORTRAN Program for the Solution of Simultaneous Linear 
Boolean Inequalities by the Algorithm of Hammer and Rudeanu 

Hammer and Rudeanu have presented an algorithm for tiding the solutions of 
a system of simultaneous linear inequalities in Boolean variables [l]. Our interest 
in this algorithm was generated by the discovery that the phase problem of X-ray 
crystallography for centrosymmetric space groups can be formulated in precisely 
this manner. The derivation of this equivalence has been presented elsewhere, 
together with an example to demonstrate that a real crystal structure can be solved 
by this method [2]. Here we wish to describe a modification that increases the 
efficiency of this algorithm, and its implementation in a FORTRAN program. 

The Hammer-Rudeanu algorithm can be summarized as follows [l]: 

(1) Convert each inequality to a canonical form (viz., for the ith inequality): 

&, + c:&z + -9. + &fim > d’, 

with ci, > ci, > *.* 3 cj, > 0. This is accomplished by a substitution of new 
variables Zi, for the original set. Each of the new variables is equal to one of the 
original variables or to the complement of one. The substitutions are in general 
different for each inequality. 

(2) Classify each inequality according to its implications about the solution. 
Under some circumstances an inequality may be redundant; under others, a 
solution may be possible only if one or more variables take certain values. The 
latter are termed determinate cases. Indeterminate cases correspond to only partial 
information: a solution is consistent with only a finite (but hopefully relatively 
small) number of possible assignments of values to variables. It can also occur 
that an inequality is impossible to satisfy for any values of the unknowns. 

(3) If no inequality is impossible to satisfy, certain variables are assigned 
values, and the inequalities rewritten to form a system in a smaller number of 
unknowns. Variables that are fixed by inequalities in determinate cases are assigned 
the unique values. If indeterminate cases only are present, one of the possibilities 
generated is selected and explored; subsequently, the other possibilities are 
explored, generating a tree. 

(4) When a node of this tree is reached at which a solution has been deter- 
150 

Copyright Q 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



SIMULTANEOUS BOOLEAN INEQUALITIES 151 

mined or at which no solution is possible, the algorithm backtracks to the last 
node still possessing unexplored possibilities. 

Hammer and Rudeanu have proved that their algorithm will generate all solutions. 
Our program follows the procedure almost exactly, except for the classification 

of certain inequalities containing only a single term on the left side, e.g. 
c * x > d > 0 (x = 0 or I), with c > d. This inequality is determinate, since x 
must equal 1. However, the published procedure, if taken literally, would explicitly 
check the case x = 0, leading immediately to an absurdity. By reclassifying 
monomials of this type as determinate the extra check is avoided. 

In constructing the program, it was found that a great increase in efficiency would 
result from care in storage allocation. The procedure involves extensive deletions 
and reinsertions of terms as the tree structure is traversed, as well as frequent 
searches for the largest term still present in an inequality at some node. The 
coefficients of each inequality are, therefore, stored in a doubly linked list, facili- 
tating deletion, reinsertion, and searching. 

The following information specifies each node of the tree: 

1. A set of variables that are fixed, and their values. 
2. A set of inequalities A * X 3 d (A is a real matrix, X is a Boolean vector, 

and d is a real vector). A is a submatrix of the original matrix. Some of its rows 
may have been deleted entirely as redundant; certain terms of other rows may have 
been deleted, as the corresponding variables become hxed in some partial solution. 

3. Classification of all the “live” inequalities. 
4. Two decisions: is no solution possible consistent with the current partial 

solution ? Has a solution been reached ? 
5. Was the node entered from above or below? 
6. Flow information. If the node was entered from above, branching 

information must be specified (the order in which the tree is to be traversed). If 
the node was entered from below, branching tables were constructed before. 

7. What level is this node at ? This serves as a pointer to the records of tied 
variables and deleted terms and inequalities needed for backtracking. 

The following specifies what to do at any node: 

1. If no solution is possible, go back up to last node. 
2. If a solution has been found, print it and go back to last node. 
3. Is any inequality determinate ? If so, fix the associated variables. Alter and 

reclassify the inequalities in which they occur, and record this information. Set 
branching tables so that any return to this node will be passed back on to its 
predecessor. Go back to step 1. 



152 LESK 

4. No variables have been fixed. If the node was entered from above, choose 
an inequality to branch on and initialize branching tables. If entered from below, 
take the next branch, as specified in the branching tables. This is done by fixing 
some variables, altering and reclassifying the inequalities, and recording the changes, 
then returning to step 1. 

The program is coded entirely in FORTRAN IV. It is slightly specialized for 
the IBM 360 series by the use of type statements including lengths (e.g., 
LOGICAL*l). The program uses a sorting routine of Rochkind [3]. 

Although the program is too long (ca. 2700 cards) for reproduction of a listing 
here, copies are available upon request from the author. 

ACKNOWLEDGMENT 

Work supported by National Institutes of Health, U. S. Public Health Service research grant 
GM-16539 and U. S. National Science Foundation research grants GB-7875 and 63;35327. 
This work made use of computer facilities supported in part by National Science Foundation 
grants NSF-GJ-34 and NSF-GU-3157. 

REFERENCES 

1. P. L. HAMMER (IVANESCLJ) AND S. RUDEANU, “Boolean Methods in Operations Research and 
Related Areas,” pp. 65 ff, Springer-Verlag, New York, 1968. 

2. A. M. LESK, Acta Cryst. A28 (1972), 55. 
3. M. M. Rocrrrrr~~, IEEE Trans. Computers C-19 (1970), 270. 

RECEIVED: August 7, 1972 
A. M. b.SK* 

Department of Biochemical Sciences 
Princeton University 

Princeton, New Jersey 08540 

*Present address: Department of Chemistry, Fairleigh Dickinson University, 1000 River 
Road, Teaneck, New Jersey 07666. 
Printed in Belghm 


